RAS BiologyЖурнал общей биологии Journal of General Biology

  • ISSN (Print) 0044-4596
  • ISSN (Online) 3034-5685

The phenomenon of unstable sexual dimorphism in rodent populations: does sexual dimorphism increase in pessimal environmental conditions?

PII
10.31857/S0044459625050051-1
DOI
10.31857/S0044459625050051
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 86 / Issue number 5
Pages
381-402
Abstract
Fluctuations of sexual dimorphism in terms of size and shape of the mandible in rodents under different ecological conditions have been studied. It has been established that sexual dimorphism in size is mainly manifested in favorable conditions, while in shape—under unfavorable ones. The conclusion is drawn about the possibility of using the degree of sexual dimorphism in the shape of the lower jaw as a marker of adaptation to extreme environmental conditions.
Keywords
неустойчивый половой диморфизм размерная изменчивость грызуны формообразование мониторинг окружающей среды
Date of publication
11.12.2025
Year of publication
2025
Number of purchasers
0
Views
3

References

  1. 1. Большаков В.Н., Васильев А.Г., Васильева И.А., Городилова Ю.В., Чибиряк М.В., 2015. Сопряженная биотопическая изменчивость ценопопуляций симпатрических видов грызунов на Южном Урале // Экология. № 4. С. 265–271.
  2. 2. Васильев А.Г., 2021. Концепция морфониши и эволюционная экология. М.: Т-во науч. изд. КМК. 315 с.
  3. 3. Васильев А.Г., Большаков В.Н., Васильева И.А., 2020а. Внутрии межпопуляционная одонтологическая изменчивость красно-серой полевки (Craseomys rufocanus) и принцип компенсации Ю.И. Чернова // Экология. № 1. С. 5–15.
  4. 4. Васильев А.Г., Васильева И.А., Городилова Ю.В., Добринский Н.Л., 2017. Принцип компенсации Ю.И. Чернова и влияние полноты состава сообщества грызунов на изменчивость популяции рыжей полёвки (Clethrionomys glareolus) на Среднем Урале // Экология. № 2. С. 116–125.
  5. 5. Васильев А.Г., Васильева И.А., Городилова Ю.В., Чибиряк М.В., 2020б. Сопряженная хронографическая изменчивость морфофункциональных признаков в ценопопуляциях двух симпатрических видов грызунов // Экология. № 4. С. 284–297.
  6. 6. Васильев А.Г., Васильева И.А., Шкурихин А.О., 2018. Геометрическая морфометрия: от теории к практике. М.: Т-во науч. изд. КМК. 471 с.
  7. 7. Жерихин В.В., 2003. Избранные труды по палеоэкологии и филоценогенетике. М.: Т-во науч. изд. КМК. 542 с.
  8. 8. Павлинов И.Я., Микешина Н.Г., 2002. Принципы и методы геометрической морфометрии // Журн. общ. биологии. Т. 63. № 6. С. 473–493.
  9. 9. Правдин И.Ф., 1966. Руководство по изучению рыб. М.: Пищепромиздат. 376 с.
  10. 10. Шварц С.С., Смирнов В.С., Добринский Л.Н., 1968. Метод морфофизиологических индикаторов в экологии наземных позвоночных. Свердловск: АН СССР. 387 с.
  11. 11. Abramov A.V., Tumanov I.L., 2003. Sexual dimorphism in the skull of the European mink Mustela lutreola from NW part of Russia // Acta Theriol. V. 48. P. 239–246.
  12. 12. Aguirre W.E., Bell M.A., 2012. Twenty years of body shape evolution in a threespine stickleback population adapting to a lake environment // Biol. J. Linn. Soc. V. 105. P. 817–831.
  13. 13. Alves S.M., Belo M., 2002. Morphometric variations in the house fly, Musca domestica (L.) with latitude // Genetica. V. 115. P. 243–251.
  14. 14. Blackenhorn W.U., Stillwell R.C., Young K.A., Fox C., Ashton K.G., 2006. When Rensch meets Bergmann: Does sexual size dimorphism change systematically with latitude? // Evolution. V. 60. P. 2004–2011.
  15. 15. Bonduriansky R., 2007. The evolution of condition-dependent sexual dimorphism // Am. Nat. V. 169. P. 9–19.
  16. 16. Bošković A., Rando O.J., 2018. Transgenerational epigenetic inheritance // Ann. Rev. Genet. V. 52. P. 21–41.
  17. 17. Burggren W., 2016. Epigenetic inheritance and its role in evolutionary biology: re-evaluation and new perspectives // Biology. V. 5. № 24. P. 2–22.
  18. 18. Ceballos G., Ehrlich P.R., Barnosky A.D., García A., Pringland R.M., Palmer T.M., 2015. Accelerated modern human-induced species losses: Entering the sixth mass extinction // Sci. Adv. V. 1. № 5. http://doi.org/10.1126/sciadv.1400253
  19. 19. Cohen J., 1992. A power primer // Psychol. Bull. V. 112. № 1. P. 155–159. http://doi.org/10.1037/0033-2909.112.1.155
  20. 20. Cornwell W.K., Schwilk D.W., Ackerly D.A., 2006. A trait-based test for habitat filtering: Convex hull volume // Ecology. V. 87. P. 1465–1471.
  21. 21. Darwin Ch.R., 1871. The descent of man, and selection in relation to sex. V. I–II. L.: John Murray, Albemarle street. 423 p., 475 p.
  22. 22. De Lisle S.P., Schrieber S.J., Bolnick D.I., 2022. Complex community-wide consequences of consumer sexual dimorphism // J. Anim. Ecol. V. 91. P. 958–969.
  23. 23. Dickins T.E., Rahman Q., 2012. The extended evolutionary synthesis and the role of soft inheritance in evolution // Proc. R. Soc. B. V. 279. P. 2913–2921.
  24. 24. Donelan S.C., Hellmann J.K., Bell A.M. et al., 2020. Transgenerational plasticity in human-altered environments // Trends Ecol. Evol. V. 35. № 2. P. 115–124.
  25. 25. Duncan E.J., Gluckman P.D., Dearden P.K., 2014. Epigenetics, plasticity and evolution: How do we link epigenetic change to phenotype? // J. Exp. Zool. B. Mol. Dev. Evol. V. 322. P. 208–220.
  26. 26. Fairbairn D.J., 1997. Allometry for sexual size dimorphism: Pattern and process in the coevolution of body size in males and females // Ann. Rev. Ecol. Syst. V. 28. № 1. P. 659–687.
  27. 27. Gálvez-López E., Cox P.G., 2022. Mandible shape variation and feeding biomechanics in minks // Sci. Rep. V. 12. Art. 4997. https://doi.org/10.1038/s41598-022-08754-4
  28. 28. Gálvez-López E., Kilbourne B., Cox P.G., 2021. Cranial shape variation in mink: Separating two highly similar species // J. Anat. V. 240. № 2. P. 210–225.
  29. 29. Gittleman J.L., Valkenburgh B., van, 1997. Sexual dimorphism in the canines and skulls of carnivores: Effects of size, phylogeny, and behavioral ecology // J. Zool. V. 242. P. 97–117.
  30. 30. Hammer Ø., 2009. New statistical methods for detecting point alignments // Comput. Geosci. V. 35. P. 659–666.
  31. 31. Hammer Ø., Harper D.A.T., Ryan P.D., 2001. PAST: Paleontological statistics software package for education and data analysis // Palaeontol. Electron. V. 4. № 1. P. 1–9.
  32. 32. Hangartner S., Sgrò C.M., Connallon T., Booksmythe I., 2022. Sexual dimorphism in phenotypic plasticity and persistence under environmental change: An extension of theory and meta-analysis of current data // Ecol. Lett. V. 25. P. 1550–1565.
  33. 33. Hedrick A.V., Temeles E.J., 1989. The evolution of sexual dimorphism in animals: Hypotheses and tests // Trends Ecol. Evol. V. 4. P. 136–138.
  34. 34. Hendry A.P., Kelly M.L., Kinnison M.T., Reznick D.L., 2006. Parallel evolution of the sexes? Effects of predation and habitat features on the size and shape of guppies // J. Evol. Biol. V. 19. P. 741–754.
  35. 35. Jablonka E., Raz G., 2009. Transgenerational epigenetic inheritance: Prevalence, mechanisms, and implications for the study of heredity and evolution // Qvart. Rev. Biol. V. 84. P. 131–176.
  36. 36. Jones M.E., Sheard C., 2023. The macroevolutionary dynamics of mammalian sexual size dimorphism // Proc. R. Soc. B. V. 290. https://doi.org/10.1098/rspb.2023.1211
  37. 37. Klingenberg C.P., 2011. MorphoJ: An integrated software package for geometric morphometrics // Mol. Ecol. Resour. V. 11. P. 353–357. https://doi.org/10.1111/j.1755-0998.2010.02924.x
  38. 38. Laland K.N., Uller T., Feldman M.W., Sterelny K., et al., 2015. The extended evolutionary synthesis: Its structure, assumptions and predictions // Phil. Trans. R. Soc. B. Biol. Sci. V. 282. https://doi.org/10.1098/rspb.2015.1019
  39. 39. Lovich J.E., Gibbons J.W., 1992. A review of techniques for quantifying sexual size dimorphism // Growth Dev. Aging. V. 56. P. 269–281.
  40. 40. Loy A., Spinosi O., Cardini R., 2004. Cranial morphology of Martes foina and M. martes (Mammalia, Carnivora, Mustelidae): The role of size and shape in sexual dimorphism and interspecific differentiation // Italian J. Zool. V. 71. P. 27–35.
  41. 41. Mayfield M.M., Boni M.F., Ackerly D.D., 2009. Traits, habitats, and clades: Identifying traits of potential importance to environmental filtering // Am. Nat. V. 174. P. E1–E22.
  42. 42. Michalko R., Pekár S., 2015. Niche partitioning and niche filtering jointly mediate the coexistence of three closely related spider species (Araneae, Philodromidae) // Ecol. Entomol. V. 40. P. 22–33.
  43. 43. Oudin M.J., Bonduriansky R., Rundle H.D., 2015. Experimental evidence of condition-dependent sexual dimorphism in the weakly dimorphic antler fly Protopiophila litigata (Diptera: Piophilidae) // Biol. J. Linn. Soc. V. 116. P. 211–220.
  44. 44. Palmer A.R., 1994. Fluctuating asymmetry analyses: A primer // Developmental Instability: Its Origins and Implications / Ed. Markow T.A. Dordrecht: Kluwer. P. 335–364.
  45. 45. Parmesan C., 2006. Ecological and evolutionary responses to recent climate change // Ann. Rev. Ecol. Evol. Syst. V. 37. P. 637–669.
  46. 46. Ralls K., 1977. Sexual dimorphism in mammals: Avian models and unanswered questions // Am. Nat. V. 111. № 981. P. 917–938.
  47. 47. Rensch B., 1950. Die Abhängigkeit der relativen Sexual differenz von Korpergrosse // Bonn Zool. Bei. Bd. 1. S. 58–69.
  48. 48. Rijssel J.C., van, Witte F., 2013. Adaptive responses in resurgent Lake Victoria cichlids over the past 30 years // Evol. Ecol. V. 27. P. 251–267.
  49. 49. Rohlf F.J., 1999. Shape statistics: Procrustes superimpositions and tangent spaces // J. Classif. V. 16. P. 197–223.
  50. 50. Rohlf F.J., 2017a. TpsUtil, file utility program, version 1.74. Department of Ecology and Evolution, State Univ. of New York at Stony Brook (program).
  51. 51. Rohlf F.J., 2017b. TpsDig2, digitize landmarks and outlines, version 2.30. Department of Ecology and Evolution, State Univ. of New York at Stony Brook (program).
  52. 52. Rohlf F.J., Slice D., 1990. Extension of the Procrustes method for the optimal superimposition of landmarks // Syst. Zool. V. 39. № 1. P. 40–59.
  53. 53. Salamin N., Wüest R.O., Lavergne S. et al., 2010. Assessing rapid evolution in a changing environment // Trends Ecol. Evol. V. 25. № 12. P. 692–698.
  54. 54. Sheets H.D., Zelditch M.L., 2013. Studying ontogenetic trajectories using resampling methods and landmark data // Hystrix. V. 24. № 1. P. 67–73.
  55. 55. Thompson J.N., 1994. The Coevolutionary Process. Chicago: Univ. Chicago Press. 376 p.
  56. 56. Trivers R.L., 1972. Parental investment and sexual selection // Sexual Selection and the Descent of Man, 1871–1971 / Ed. Campbell B. Chicago: Aldine. P. 136–179.
  57. 57. Waddington C.H., 1942. Canalization of development and the inheritance of acquired characters // Nature. V. 150. P. 563–565.
  58. 58. Wang Y., Qiao Z., Mao L., Lib F., et al., 2022. Sympatric speciation of the spiny mouse from Evolution Canyon in Israel substantiated genomically and methylomically // PNAS. V. 119. № 13. Art. e2121822119. https://doi.org/10.1073/pnas.2121822119
  59. 59. Zakharov V.M., 1992. Population phenogenetics: Analysis of developmental stability in natural populations // Acta Zool. Fenn. V. 191. P. 7–30.
  60. 60. Zelditch M.L., Mezey J., Sheets H.D., et al., 2006. Developmental regulation of skull morphology II: Ontogenetic dynamics of covariance // Evol. Develop. V. 8. № 1. P. 46–60.
  61. 61. Zelditch M.L., Swiderski D.L., Sheets H.D., Fink W.L., 2004. Geometric Morphometrics for Biologists: A Primer. N.-Y.: Elsevier Acad. Press. 437 p.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library